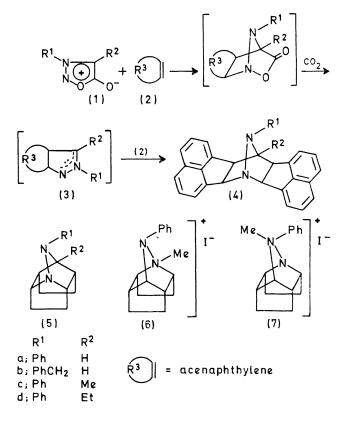
## Double 1,3-Cycloadditions of Sydnones. Synthesis of 9,10-Diazatetracyclo[6,3,0,0<sup>4,11</sup>,0<sup>5,9</sup>]undecanes<sup>1</sup>

By P. M. WEINTRAUB

(Hess and Clark, Division of Richardson-Merrell, Ashland, Ohio 44805)


Summary Reaction of sydnones with cis, cis-cyclo-octa-1,5-diene gives the novel 9,10-diazatetracyclo[6,3,0,- $0^{4,11}, 0^{5,9}$ ]undecane ring system.

SYDNONES are known to undergo 1,3-cycloadditions to olefins<sup>2</sup> and acetylenes<sup>2</sup> with concomitant loss of carbon dioxide to give 2-pyrazolidines and pyrazoles, respectively. One of the interesting examples of this addition is the reaction of 3-phenylsydnone (1;  $\mathbb{R}^1 = \mathbb{P}h$ ,  $\mathbb{R}^2 = \mathbb{H}$ ) with acenaphthylene (2) to give dimer (4) as a minor product.<sup>3</sup> Consequently, the reaction of intermediate (3) ( $\mathbb{R}^1 = 1,8$ naphthyl) with more (2) must be competitive with the electronic reorientation to give the corresponding pyrazolidine. We have used this reaction to prepare the novel diazatetracycloundecanes (5).

Thus, heating (1;  $R^1 = Ph$ ,  $R^2 = H$ ) with cyclo-octa-1,5diene at 150° gave a crystalline, acid-soluble adduct, m.p.  $81-82^{\circ}$  (44%), which formed a monohydrochloride, m.p.  $214-216^{\circ}$  (decomp.) and a monopicrate, m.p. 198-200°. Elemental analysis of the adduct was in accord with the formula  $C_{15}H_{18}N_2$ : a 1 : 1 adduct with loss of carbon dioxide. The <sup>1</sup>H n.m.r. spectrum showed no vinyl protons: it had peaks at  $\delta$  (CDCl<sub>3</sub>) 1.55-192 (m, 8H), 2.09-2.52 (m, 2H), 3.27-3.62 (pair of t, 2H) 4.42 (t, 1H, J 4 Hz), 6.35-7.43 (m, 5H), in accord with structure (5a).

Similarly, 3-benzylsydnone (1;  $R^1 = PhCH_2$ ,  $R^2 = H$ ) gave (5b), b.p.  $141^{\circ}/0.1 \text{ mm} (22^{\circ}/_{\circ})$ , hydrochloride, m.p. 237—238°, picrate, m.p. 146—147°. A hydrocarbon substituent at C-4 of the sydnone seemed to facilitate the reaction. Thus, (1;  $R^1 = Ph$ ,  $R^2 = Me$ ) gave (5c) (62°/<sub>o</sub>) as a viscous liquid, picrate, m.p. 175—177°, while (1;  $R^1$ = Ph,  $R^2 = Et$ ) gave (5d) as a white solid, m.p. 85—89° (64°/<sub>o</sub>). No isolable products were obtained from 4-chloroor 4-nitro-3-phenylsydnones.

(5a) gave two isomeric methiodides (6), m.p. 233–234°, (25.2%), (CDCl<sub>3</sub>) 1.83-2.60 (m, 8H), 3.00-3.46, 3.41 (m and s, 5H), 4.25-4.45 (m, 0.6H), 4.58 (t, 2H, J 4 Hz), 7.54 (s with additional splittings, 5H) and (7), double m.p. 120-121°, 227-231°, (38.7%),  $\delta$  (CDCl<sub>3</sub>) 1.60-2.30 (m,



8·5H), 2·30—2·72 (m, 1·5H) 3.18—3·75 (broad partially resolved t, 2H), 3·87 (s, 3H), 4·28—4·63 (broad d, 1H), 6·33 (t, 1H, J 4 Hz), 7·50—7·70 (m, 3H), 7·88—8·53 (m, 2H),

in a ratio of 2:3, respectively. The structural assignments are based on the downfield chemical shift<sup>4</sup> of the C-11

methine proton of (6) ( $\delta$  6.33) compared with (5a) ( $\delta$  4.42) and (7) ( $\delta$  4.58).

(Received, May 4th, 1970; Com. 671.)

<sup>1</sup> For the previous paper in this series see P. M. Weintraub and R. E. Bambury, Tetrahedron Letters, 1969, 579.
<sup>2</sup> See R. Huisgen, Bull. Soc. chim. France, 1965, 3431; R. Huisgen, Angew. Chem. Internat. Edn., 1963, 2, 565; R. Huisgen, ibid., 1963, 2, 563; R. Huisgen and H. Gotthardt, Chem. Ber., 1968, 101, 1059.
<sup>3</sup> H. Gotthardt and R. Huisgen, Chem. Ber., 1968, 101, 552; R. Huisgen, R. Grashey, H. Gotthardt, and R. Schmidt, Angew. Chem. Letters Edv., 1969, 1

Internat. Edn., 1962, 1, 49.

<sup>4</sup> J. B. Davis, Chem. and Ind., 1968, 1094.